超材料(Metamaterial)是一类具有特殊性质的人造材料,这些材料是自然界没有的。它们拥有一些特别的性质,比如让光改变它们的通常性质,而这样的效果是传统材料无法实现的。目前,超材料通常是通过对计算机模拟结构进行物理光刻来完成,很难采用化学合成的方法实现。胶体光子晶体(Colloidal photonic crystals, CPC)是一类由单分散微球自组装而成的新型光学微结构材料,其具有独特的光学特性(光扩散、光学增强和布拉格衍射效应),尤其是其特定波长的光子带隙可选择性的操纵光子的传播,促进光子发射增强。因此,基于化学合成的胶体光子晶体微球的超材料制备被寄予期望。
尽管胶体光子晶体自1957年发明以来,其固含量(通常在5-10%)与组装效率低制约其大规模工业化应用。常规乳液聚合通常使用单一表面活性剂,这种情况下,高固含量与单分散性二者难以同时满足。一方面,在合成高固含量乳液时,单一离子表面活性剂提供的微球之间的排斥力不足,常出现团聚现象,无法获得单分散的粒径分布。另一方面,由于乳液的粘度随着固体含量的增加而增加,较高的粘度会影响乳胶的单分散性。
针对上述难题问题,南京工业大学化工学院、材料化学工程国家重点实验室陈苏教授团队设计出静电和空间双稳定平衡体系,制备出固含量为55 wt.%的单分散聚(苯乙烯-丙烯酸丁酯-甲基丙烯酸)(P(St-BA-MAA))胶体乳液。与传统低固含量胶体光子晶体(10%)相比其组装效率提供了280%,更重要的是,通过磁控溅射法实现了折射率接近零的银涂层胶体光子晶体(Ag@CPC)制备,呈现出独特超材料的特性。由于其组装效率高,Ag@CPC超材料涂层实现了CdSe@ZnS量子点(Quantum dots, QDs)约11倍光致发光(PL)增强,为高质量、节能的液晶显示(LCD)器件提供了新途径。此外,Ag@CPC超材料涂层具有强大的节能功能。
该研究成果于近日发表在国际重要刊物《Advanced Materials》上。(Facile Access to High Solid Content Monodispersed Microspheres via Dual-Component Surfactants Regulation towards High-Performance Colloidal Photonic Crystals, DOI: 10.1002/adma.202312879)。
该课题得到了国家自然科学基金重点项目、国家重点研发计划、国家青年自然基金、江苏省高校优势学科建设工程、材料化学工程国家重点实验室等基金的资助和支持。
中华人民共和国国家发展和改革委员会 中华人民共和国工业和信息化部 中华人民共和国应急管理部 中华人民共和国生态环境部 中华人民共和国科学技术部 中华人民共和国财政部 中华人民共和国商务部 中国石油和化学工业联合会
江苏省发展和改革委员会 江苏省工业和信息化厅 江苏省财政厅 江苏省生态环境厅 江苏省科学技术厅 江苏省商务厅 江苏省应急管理厅 江苏省市场监督管理局 江苏省统计局
北京市化学工业协会 天津市石油和化工协会 辽宁省石油和化学工业协会 内蒙古石油和化学工业协会 重庆市石油与天然气学会 河北省石油和化学工业协会 山西省化学工业协会 吉林省能源协会 黑龙江省石化行业协会 浙江省石油和化学工业行业协会 安徽省石油和化学工业协会 福建省石油和化学工业协会 江西省石油和化学工业协会 河南省石油和化学工业协会 湖北省石化行业协会 湖南省石油化学工业协会 广东省石油和化学工业协会 海南省石油和化学工业行业协会 四川省化工行业协会 贵州省化学工业协会 云南省化工行业协会 陕西省经济联合会 甘肃省石化工业协会 青海省化工协会
电话:协会:025-8799064 学会:025-86799482
会员服务部:025-86918841
信息部:025-86910067
传真:025-83755381
邮箱:jshghyxh@163.com
邮编:210019
地址:南京市梦都大街50号东楼(省科技工作者活动中心)5楼
增值电信业务经营许可证:苏B2-20110130
备案号:苏ICP备13033418号-1