我国能源革命和碳中和是一场真正的硬仗,面临的主要问题是:产业结构偏重,第二产业GDP贡献约40%,能源消费占比约68%;能源结构偏煤,2022年煤炭消费占比56%;综合效率偏低,大约60%的能源消耗在工业用能上,工业碳排放占比在65%以上。从化工领域看,生产合成氨、乙烯、甲醇、丙烯等化学品的排放量占很大比例,所以大宗化学品减排是非常重要的方面。
化石能源的利用分为氧化过程和还原过程。氧化过程,即用来燃烧发电或者产热;还原过程,即用作炼钢、化工等工艺的还原剂。碳和氢都可以用作燃料,也都可以用作还原剂,而碳的氧化过程(C+O2→CO2+△H)和还原过程(MOx+C→M+CO2)均产生大量二氧化碳,需要通过CCUS、生物质利用、植树、海洋碳汇、土壤吸附等负碳技术减排;氢的氧化过程(H2+O2→H2O+△H)和还原过程(MOx+H2→M+H2O)则很清洁。更重要的是,氢可以通过可再生能源发电然后电解水获取。从我国当前的情况看,化石能源在未来一段时间内还是基础,而可再生能源则是根本,氢能技术是关键,负碳技术是未来,没有可再生能源,能源革命和碳中和就无从谈起。
在前不久举办的中国石化科技创新未来发展论坛上,中国科学院院士、中国科学技术大学校长包信和分析了“双碳”背景下石化科技面临的机遇与挑战。本版整理刊发部分观点,敬请关注。
煤化工的创新路线:如何不排放二氧化碳
可以肯定的是,在未来相当长一段时间,化石能源仍是主要能源,必须通过更好地优化利用化石能源实现碳减排。我国的能源禀赋是液体能源较少,其中石油对外依存度超过70%,因此,有必要把资源禀赋相对较好的煤部分转化为化学品或者燃料。据权威机构预测,到2060年,煤的物质化利用在煤的利用中会占较大比例,煤化工在未来一段时间内对我国还是非常重要的。
煤化工的传统路线是,煤首先要加氧气化(C(H)+O2→CO+H2),变成合成气,合成气通过催化的方法可以得到不同的产品:通过费托合成可以得到石蜡、柴油,或者烯烃、汽油;通过碱金属掺杂可以得到混合醇;通过催化可以得到甲醇、乙醇;通过羟基合成可以得到醛、醇、酸;通过水气变换(CO+H2O→H2+CO2)可以得到氢气,进一步制取合成氨。这一传统路线的问题有三个:一是排放二氧化碳;二是消耗大量的水;三是选择性不高,合成产物从碳1到碳100都有分布。这是未来基础研究应该解决的问题。
煤气化的氢碳比是1∶2,即H2+CO+CO,反应得到CH2•中间体,这就要去掉其中一个CO的O和另一个CO。延续百年的传统方法是用水跟一氧化碳反应生成氢和二氧化碳,即CO+H2O→CO2+H2,生成的氢再与另一个一氧化碳的氧反应生成水。这个过程中,要用水生成氢,后面又生成废水,所以传统方法耗水,而且有碳排放。中国科学院大连化学物理研究所研发的OXZEO过程,可将其中一个CO的O和另一个CO直接合成生成二氧化碳,碳排放总量不变,但不需要水的循环,工艺简单,通过氧化物和分子筛的控制可以实现较高选择性。未来如果有足够的廉价绿氢,又可以与生成的二氧化碳反应得到CH2中间体,实现零排放。
煤气化会产生二氧化碳,因为要对煤加氧进行气化,生成一氧化碳(2C+O2→2CO),而变换时又要把一氧化碳的氧拿走(CO+H2O→CO2+H2),所以生成了二氧化碳。未来煤化工要想真正不排放二氧化碳,就要用其他方法对煤进行活化转化,这就要通过绿氢直接生成烃类、油品等(H2+CO+H2(绿氢)→CH2+H2O),采用复合催化剂,可以实现产品精准可控、灵活可调。
煤化工要想不排放二氧化碳,就要在气化上动脑筋。目前,我国制乙炔还是传统的电石法,生产1吨乙炔要消耗2吨焦炭、7吨石灰石、3吨水、1.2万千瓦时电,产生27吨二氧化碳、3.5吨电石渣,以及硫化氢、二氧化硫等酸性气体。如果将煤粉通过等离子体裂解,在超过1300摄氏度的高温下,可生成乙炔,副产煤焦、一氧化碳、氢气等,理论上不产生二氧化碳,生产1吨乙炔只消耗2吨煤、1.5吨水。乙炔可以加氢制乙烯,还可以通过氢氯化制氯乙烯、通过羰基化制含氧化合物。在20世纪70年代以前,乙炔一直在化工中占有重要地位,是化工产品的重要节点,而后石油大发展才变成石油化工制烯烃,乙炔渐渐淡出历史舞台。利用等离子体强化煤裂解制高值化学品,从零排放的角度看,未来有可能有一部分化工会重回炔烃时代。
二氧化碳的利用是从低能到高能,需要热、光、电催化转化
二氧化碳的来源包括化石燃料、工业过程、生物过程、地下矿藏、大气等。目前,二氧化碳捕集并直接地质埋存成本高昂;直接利用方式包括植物或肥料增产、提高石油采收率、作为传热流体用于超临界动力系统,以及用于食品、饮料、焊接、医疗等行业;转化利用方式包括制造甲烷、甲醇、汽油等燃料,制造聚合物等化学品,以及制造建筑材料等。
我国二氧化碳化学转化利用面临的科学难题包括:一是规模不对等,我国最大宗的化学品乙烯年产量在6000万~7000万吨,是二氧化碳排放量的几百分之一;二是二氧化碳分子能量低,要想化学利用,变成高能量的化学品,就一定要活化,加入超过100%的能量;三是我国贫氢,而二氧化碳化学利用需要加入大量的氢,目前我国氢主要来自化石能源。所以,二氧化碳的化学转化非常困难,除非是在富氢、富能和二氧化碳插入反应的特殊体系来转化,如利用二氧化碳制造碳酸二甲酯。
转化二氧化碳需要加入的能量和氢,要靠可再生能源来提供。因此,二氧化碳的转化,本质上是可再生能源的储存和搬运。没有可再生能源,二氧化碳转化就无从谈起。
二氧化碳的转化方法包括热催化过程、光化学过程、电化学过程。其中,热催化制甲醇已有百年历史,从分子式(CO2+3H2→CH3OH+H2O)看,6千克氢(18元/千克)可制得32千克甲醇(2500元/吨),成本108元,产出80元;热催化制烯烃,从分子式(2CO2+6H2→CH2CH2+4H2O)看,12千克氢可制得28千克乙烯(7500元/吨),成本216元,产出205元。简单分析,要实现经济性是很难的。因此,二氧化碳的交易价格、氢的价格、煤的价格,决定了二氧化碳热催化转化的经济性,这是很大的挑战。
光化学过程可以建设太阳燃料工厂,将太阳能高效低成本转化为氢能、燃料、化学品等。目前,光催化水制氢,仍受制于低能量转化效率瓶颈,需要提升材料的光生电荷分离效率;光催化二氧化碳制燃料或化学品,转化效率非常低,远不及热催化和电催化,未来需要在光反应和催化剂上下功夫。中国科学院成功将二氧化碳人工合成淀粉,是以二氧化碳为原料,利用光伏等可再生电源分解水提供氢气,在化学反应器中进行二氧化碳高效还原,在生物反应装置中合成淀粉。如果这一途径可以达到理论能量转换效率的80%,从电到淀粉合成的能量转换效率可达41.6%,那么合成1千克淀粉需要大约10千瓦时电,通过途径改造,能效提高空间很大。
这三个方法中,目前看来最可行的是将二氧化碳电解转化,最近也有一些好的进展。二氧化碳通过电还原的方法,不仅可以还原为一氧化碳,还可以生产甲酸、甲烷、乙烯、乙醇等。一氧化碳电化学直接制化学品,每生产1千克乙烯,消耗电47千瓦时,副产氢气0.054千克、乙醇0.83千克、丙醇0.42千克、乙酸2.35千克。二氧化碳电化学直接制化学品,每生产1千克乙烯,消耗电86.2千瓦时,副产氢气0.26千克、一氧化碳0.078千克。如果电价合适,电化学方法的经济性是可以比肩热催化的。但一个很大的问题是,相比石油化工放大是靠催化剂的加量(从1克到1千克到1吨),电化学的放大完全靠面积的放大,难度很大,因此,电催化转化未来努力的方向是稳定性和可放大性。
氢是可再生能源的搬运工,可以有效降低流程工业碳排放
当前的能源系统以化石能源为主,为终端用户提供电力和液体燃料;未来的能源系统以核能和可再生能源为主,为终端用户提供氢能和电力。氢能与未来能源系统可以很好地耦合。据中国石化经济技术研究院预测,到2060年,我国氢产量将达1.2亿吨,其中绿氢有1亿吨的规模。
套用一句广告词——氢是可再生能源的搬运工。没有可再生能源就不要谈氢能。氢是二次能源,像电一样,没有一次能源就不要谈电。绿氢的关键是可再生能源的获得和氢的制备。
目前几种电解水制氢技术各有所长:碱性电解水制氢,电解效率在60%~75%,工作温度在70~90摄氏度,已商业化广泛应用;质子交换膜电解水制氢,电解效率在80%~90%,工作温度在70~80摄氏度,已部分商业化应用;固体氧化物电解水制氢,电解效率在85%~100%,工作温度在600~1000摄氏度,处于样机示范运行阶段。采用这几种技术,1立方米氢消耗3.5~4.2千瓦时电,未来降低氢的价格主要是降低设备的投资。
此外,固体聚合物(SPE)电解水制氢技术优势明显:电解纯水,无腐蚀污染;响应快,可与风能、太阳能结合;氢气纯度高,在99.99%以上;电解效率高,能耗低,无碱雾净化装置。中国科学院大连化物所研制的260千瓦SPE电解槽,电解效率达86%,极限为1立方米氢气消耗3.54千瓦时电。大规模SPE电解水制氢面临的挑战是,如何降低贵金属的用量、研制高效廉价的膜材料等。
预计到2050年,电解水制氢的价格要低于煤制氢的价格,届时,我国氢消费量将达8100万吨,氢能总产值达1.6万亿元。
氢可以实现可再生能源的大规模储存和传输。可再生能源电解水制得的氢,可以直接通过输氢管道输送,也可以制合成氨或甲醇,技术上没有难度,关键是经济性。
我国很大一部分二氧化碳排放来自流程工业,与绿氢耦合可以有效降低碳排放。如高炉炼钢,2020年我国粗钢产量10.65亿吨,排放二氧化碳14.7亿吨。现在是用一氧化碳、甲烷等还原,未来如果用氢来还原氧化铁变成金属铁,会很好地解决碳排放问题。预计到2050年,低碳(氢)冶金占比将在50%左右。在水泥行业,我国2020年水泥产量23.95亿吨,排放二氧化碳14.2亿吨,主要是将碳酸钙煅烧成氧化钙排放,可以把煅烧变成还原,用碳或氢将碳酸钙还原为氧化钙。
水泥生产如果用粉煤中的碳还原碳酸钙,可以得到一氧化碳。一氧化碳又可以与钢铁生产耦合,将氧化铁还原为金属铁。两个过程采用绿电和高效等离子体加热的方法,可以实现水泥和钢铁生产的耦合,既简化了工艺,又降低了排放。
二氧化碳的来源包括化石燃料、工业过程、生物过程、地下矿藏、大气等。目前,二氧化碳捕集并直接地质埋存成本高昂;直接利用方式包括植物或肥料增产、提高石油采收率、作为传热流体用于超临界动力系统,以及用于食品、饮料、焊接、医疗等行业;转化利用方式包括制造甲烷、甲醇、汽油等燃料,制造聚合物等化学品,以及制造建筑材料等。
我国二氧化碳化学转化利用面临的科学难题包括:一是规模不对等,我国最大宗的化学品乙烯年产量在6000万~7000万吨,是二氧化碳排放量的几百分之一;二是二氧化碳分子能量低,要想化学利用,变成高能量的化学品,就一定要活化,加入超过100%的能量;三是我国贫氢,而二氧化碳化学利用需要加入大量的氢,目前我国氢主要来自化石能源。所以,二氧化碳的化学转化非常困难,除非是在富氢、富能和二氧化碳插入反应的特殊体系来转化,如利用二氧化碳制造碳酸二甲酯。
转化二氧化碳需要加入的能量和氢,要靠可再生能源来提供。因此,二氧化碳的转化,本质上是可再生能源的储存和搬运。没有可再生能源,二氧化碳转化就无从谈起。
二氧化碳的转化方法包括热催化过程、光化学过程、电化学过程。其中,热催化制甲醇已有百年历史,从分子式(CO2+3H2→CH3OH+H2O)看,6千克氢(18元/千克)可制得32千克甲醇(2500元/吨),成本108元,产出80元;热催化制烯烃,从分子式(2CO2+6H2→CH2CH2+4H2O)看,12千克氢可制得28千克乙烯(7500元/吨),成本216元,产出205元。简单分析,要实现经济性是很难的。因此,二氧化碳的交易价格、氢的价格、煤的价格,决定了二氧化碳热催化转化的经济性,这是很大的挑战。
光化学过程可以建设太阳燃料工厂,将太阳能高效低成本转化为氢能、燃料、化学品等。目前,光催化水制氢,仍受制于低能量转化效率瓶颈,需要提升材料的光生电荷分离效率;光催化二氧化碳制燃料或化学品,转化效率非常低,远不及热催化和电催化,未来需要在光反应和催化剂上下功夫。中国科学院成功将二氧化碳人工合成淀粉,是以二氧化碳为原料,利用光伏等可再生电源分解水提供氢气,在化学反应器中进行二氧化碳高效还原,在生物反应装置中合成淀粉。如果这一途径可以达到理论能量转换效率的80%,从电到淀粉合成的能量转换效率可达41.6%,那么合成1千克淀粉需要大约10千瓦时电,通过途径改造,能效提高空间很大。
这三个方法中,目前看来最可行的是将二氧化碳电解转化,最近也有一些好的进展。二氧化碳通过电还原的方法,不仅可以还原为一氧化碳,还可以生产甲酸、甲烷、乙烯、乙醇等。一氧化碳电化学直接制化学品,每生产1千克乙烯,消耗电47千瓦时,副产氢气0.054千克、乙醇0.83千克、丙醇0.42千克、乙酸2.35千克。二氧化碳电化学直接制化学品,每生产1千克乙烯,消耗电86.2千瓦时,副产氢气0.26千克、一氧化碳0.078千克。如果电价合适,电化学方法的经济性是可以比肩热催化的。但一个很大的问题是,相比石油化工放大是靠催化剂的加量(从1克到1千克到1吨),电化学的放大完全靠面积的放大,难度很大,因此,电催化转化未来努力的方向是稳定性和可放大性。
二氧化碳的来源包括化石燃料、工业过程、生物过程、地下矿藏、大气等。目前,二氧化碳捕集并直接地质埋存成本高昂;直接利用方式包括植物或肥料增产、提高石油采收率、作为传热流体用于超临界动力系统,以及用于食品、饮料、焊接、医疗等行业;转化利用方式包括制造甲烷、甲醇、汽油等燃料,制造聚合物等化学品,以及制造建筑材料等。
我国二氧化碳化学转化利用面临的科学难题包括:一是规模不对等,我国最大宗的化学品乙烯年产量在6000万~7000万吨,是二氧化碳排放量的几百分之一;二是二氧化碳分子能量低,要想化学利用,变成高能量的化学品,就一定要活化,加入超过100%的能量;三是我国贫氢,而二氧化碳化学利用需要加入大量的氢,目前我国氢主要来自化石能源。所以,二氧化碳的化学转化非常困难,除非是在富氢、富能和二氧化碳插入反应的特殊体系来转化,如利用二氧化碳制造碳酸二甲酯。
转化二氧化碳需要加入的能量和氢,要靠可再生能源来提供。因此,二氧化碳的转化,本质上是可再生能源的储存和搬运。没有可再生能源,二氧化碳转化就无从谈起。
二氧化碳的转化方法包括热催化过程、光化学过程、电化学过程。其中,热催化制甲醇已有百年历史,从分子式(CO2+3H2→CH3OH+H2O)看,6千克氢(18元/千克)可制得32千克甲醇(2500元/吨),成本108元,产出80元;热催化制烯烃,从分子式(2CO2+6H2→CH2CH2+4H2O)看,12千克氢可制得28千克乙烯(7500元/吨),成本216元,产出205元。简单分析,要实现经济性是很难的。因此,二氧化碳的交易价格、氢的价格、煤的价格,决定了二氧化碳热催化转化的经济性,这是很大的挑战。
光化学过程可以建设太阳燃料工厂,将太阳能高效低成本转化为氢能、燃料、化学品等。目前,光催化水制氢,仍受制于低能量转化效率瓶颈,需要提升材料的光生电荷分离效率;光催化二氧化碳制燃料或化学品,转化效率非常低,远不及热催化和电催化,未来需要在光反应和催化剂上下功夫。中国科学院成功将二氧化碳人工合成淀粉,是以二氧化碳为原料,利用光伏等可再生电源分解水提供氢气,在化学反应器中进行二氧化碳高效还原,在生物反应装置中合成淀粉。如果这一途径可以达到理论能量转换效率的80%,从电到淀粉合成的能量转换效率可达41.6%,那么合成1千克淀粉需要大约10千瓦时电,通过途径改造,能效提高空间很大。
这三个方法中,目前看来最可行的是将二氧化碳电解转化,最近也有一些好的进展。二氧化碳通过电还原的方法,不仅可以还原为一氧化碳,还可以生产甲酸、甲烷、乙烯、乙醇等。一氧化碳电化学直接制化学品,每生产1千克乙烯,消耗电47千瓦时,副产氢气0.054千克、乙醇0.83千克、丙醇0.42千克、乙酸2.35千克。二氧化碳电化学直接制化学品,每生产1千克乙烯,消耗电86.2千瓦时,副产氢气0.26千克、一氧化碳0.078千克。如果电价合适,电化学方法的经济性是可以比肩热催化的。但一个很大的问题是,相比石油化工放大是靠催化剂的加量(从1克到1千克到1吨),电化学的放大完全靠面积的放大,难度很大,因此,电催化转化未来努力的方向是稳定性和可放大性。
二氧化碳的来源包括化石燃料、工业过程、生物过程、地下矿藏、大气等。目前,二氧化碳捕集并直接地质埋存成本高昂;直接利用方式包括植物或肥料增产、提高石油采收率、作为传热流体用于超临界动力系统,以及用于食品、饮料、焊接、医疗等行业;转化利用方式包括制造甲烷、甲醇、汽油等燃料,制造聚合物等化学品,以及制造建筑材料等。
我国二氧化碳化学转化利用面临的科学难题包括:一是规模不对等,我国最大宗的化学品乙烯年产量在6000万~7000万吨,是二氧化碳排放量的几百分之一;二是二氧化碳分子能量低,要想化学利用,变成高能量的化学品,就一定要活化,加入超过100%的能量;三是我国贫氢,而二氧化碳化学利用需要加入大量的氢,目前我国氢主要来自化石能源。所以,二氧化碳的化学转化非常困难,除非是在富氢、富能和二氧化碳插入反应的特殊体系来转化,如利用二氧化碳制造碳酸二甲酯。
转化二氧化碳需要加入的能量和氢,要靠可再生能源来提供。因此,二氧化碳的转化,本质上是可再生能源的储存和搬运。没有可再生能源,二氧化碳转化就无从谈起。
二氧化碳的转化方法包括热催化过程、光化学过程、电化学过程。其中,热催化制甲醇已有百年历史,从分子式(CO2+3H2→CH3OH+H2O)看,6千克氢(18元/千克)可制得32千克甲醇(2500元/吨),成本108元,产出80元;热催化制烯烃,从分子式(2CO2+6H2→CH2CH2+4H2O)看,12千克氢可制得28千克乙烯(7500元/吨),成本216元,产出205元。简单分析,要实现经济性是很难的。因此,二氧化碳的交易价格、氢的价格、煤的价格,决定了二氧化碳热催化转化的经济性,这是很大的挑战。
光化学过程可以建设太阳燃料工厂,将太阳能高效低成本转化为氢能、燃料、化学品等。目前,光催化水制氢,仍受制于低能量转化效率瓶颈,需要提升材料的光生电荷分离效率;光催化二氧化碳制燃料或化学品,转化效率非常低,远不及热催化和电催化,未来需要在光反应和催化剂上下功夫。中国科学院成功将二氧化碳人工合成淀粉,是以二氧化碳为原料,利用光伏等可再生电源分解水提供氢气,在化学反应器中进行二氧化碳高效还原,在生物反应装置中合成淀粉。如果这一途径可以达到理论能量转换效率的80%,从电到淀粉合成的能量转换效率可达41.6%,那么合成1千克淀粉需要大约10千瓦时电,通过途径改造,能效提高空间很大。
这三个方法中,目前看来最可行的是将二氧化碳电解转化,最近也有一些好的进展。二氧化碳通过电还原的方法,不仅可以还原为一氧化碳,还可以生产甲酸、甲烷、乙烯、乙醇等。一氧化碳电化学直接制化学品,每生产1千克乙烯,消耗电47千瓦时,副产氢气0.054千克、乙醇0.83千克、丙醇0.42千克、乙酸2.35千克。二氧化碳电化学直接制化学品,每生产1千克乙烯,消耗电86.2千瓦时,副产氢气0.26千克、一氧化碳0.078千克。如果电价合适,电化学方法的经济性是可以比肩热催化的。但一个很大的问题是,相比石油化工放大是靠催化剂的加量(从1克到1千克到1吨),电化学的放大完全靠面积的放大,难度很大,因此,电催化转化未来努力的方向是稳定性和可放大性。
中华人民共和国国家发展和改革委员会 中华人民共和国工业和信息化部 中华人民共和国应急管理部 中华人民共和国生态环境部 中华人民共和国科学技术部 中华人民共和国财政部 中华人民共和国商务部 中国石油和化学工业联合会
江苏省发展和改革委员会 江苏省工业和信息化厅 江苏省财政厅 江苏省生态环境厅 江苏省科学技术厅 江苏省商务厅 江苏省应急管理厅 江苏省市场监督管理局 江苏省统计局
北京市化学工业协会 天津市石油和化工协会 辽宁省石油和化学工业协会 内蒙古石油和化学工业协会 重庆市石油与天然气学会 河北省石油和化学工业协会 山西省化学工业协会 吉林省能源协会 黑龙江省石化行业协会 浙江省石油和化学工业行业协会 安徽省石油和化学工业协会 福建省石油和化学工业协会 江西省石油和化学工业协会 河南省石油和化学工业协会 湖北省石化行业协会 湖南省石油化学工业协会 广东省石油和化学工业协会 海南省石油和化学工业行业协会 四川省化工行业协会 贵州省化学工业协会 云南省化工行业协会 陕西省经济联合会 甘肃省石化工业协会 青海省化工协会
电话:协会:025-8799064 学会:025-86799482
会员服务部:025-86918841
信息部:025-86910067
传真:025-83755381
邮箱:jshghyxh@163.com
邮编:210019
地址:南京市梦都大街50号东楼(省科技工作者活动中心)5楼
增值电信业务经营许可证:苏B2-20110130
备案号:苏ICP备13033418号-1